top of page


Certified Data Science Practitioner



USD 2,550 excl. VAT

5 Days

AI Image2 copy_edited.jpg



To ensure your success in this course, you should have at least a high-level understanding of fundamental data science concepts, including, but not limited to: types of data, data science roles, the overall data science lifecycle, and the benefits and challenges of data science. You can obtain this level of knowledge by taking the CertNexus DSBIZ™ (Exam DSZ-110) course.

What you'll will learn

What you’ll learn in this course

For a business to thrive in our data-driven world, it must treat data as one of its most important assets. Data is crucial for understanding where the business is and where it's headed. Not only can data reveal insights, it can also inform—by guiding decisions and influencing day-to-day operations. This calls for a robust workforce of professionals who can analyze, understand, manipulate, and present data within an effective and repeatable process framework. In other words, the business world needs data science practitioners.

This course will enable you to bring value to the business by putting data science concepts into practice. This course includes hands on activities for each topic area. For a detailed outline including activities,


Course Objectives

In this course, you will implement data science techniques in order to address business issues.
You will:
• Use data science principles to address business issues.
• Apply the extract, transform, and load (ETL) process to prepare datasets.
• Use multiple techniques to analyze data and extract valuable insights.
• Design a machine learning approach to address business issues.

Train, tune, and evaluate classification models.
• Train, tune, and evaluate regression and forecasting models.
• Train, tune, and evaluate clustering models.
• Finalize a data science project by presenting models to an audience, putting models into production, and monitoring model performance.


Course Outline

Lesson 1: Addressing Business Issues with Data Science
Topic A: Initiate a Data Science Project
Topic B: Formulate a Data Science Problem
Lesson 2: Extracting, Transforming, and Loading Data
Topic A: Extract Data
Topic B: Transform Data
Topic C: Load Data
Lesson 3: Analyzing Data
Topic A: Examine Data
Topic B: Explore the Underlying Distribution of Data
Topic C: Use Visualizations to Analyze Data
Topic D: Preprocess Data
Lesson 4: Designing a Machine Learning Approach
Topic A: Identify Machine Learning Concepts
Topic B: Test a Hypothesis

Lesson 5: Developing Classification Models
Topic A: Train and Tune Classification Models
Topic B: Evaluate Classification Models
Lesson 6: Developing Regression Models
Topic A: Train and Tune Regression Models
Topic B: Evaluate Regression Models
Lesson 7: Developing Clustering Models
Topic A: Train and Tune Clustering Models
Topic B: Evaluate Clustering Models
Lesson 8: Finalizing a Data Science Project
Topic A: Communicate Results to Stakeholders
Topic B: Demonstrate Models in a Web App
Topic C: Implement and Test Production Pipelines

Further information

If you would like to know more about this course please contact us

bottom of page